Papers from SWICo members
Luca Spogli, Mirko Piersanti, Claudio Cesaroni, Massimo Materassi, Antonio Cicone, Lucilla Alfonsi, Vincenzo Romano, and Rodolfo Gerardo Ezquer
By leveraging on the modal analysis provided by the Adaptive Local Iterative Filtering (ALIF) technique, this study focuses on the multi-scale variability of the amplitude scintillation on Global Navigation Satellite Systems (GNSSs) recorded over San Miguel de Tucumán (Argentina).
The site is nominally located below the expected position of the southern crest of the Equatorial Ionospheric Anomaly (EIA). The considered period is 1–31 March 2011, during which one minor and one moderate storm characterize the first half of the month, while generally quiet conditions of the geospace stand for the second half. The multiscale analysis is extended to helio-geophysical parameters to speculate on the possible relationship between forcing factors from the geospace and the ionospheric response. Resonant modes in the Akasofu (e) parameter are identified as likely related to the frequency components in the time evolution found for the amplitude scintillation index, hence modulating the scintillation itself. The analysis shows how the time-frequency structure of the amplitude scintillation can be characterized in terms of the resonant modes found in the combination of the Akasofu parameter. When assessed statistically, the proposed study can support models driven by interplanetary parameters aimed at characterizing the low latitude scintillation. The detection of resonant modes in the identified parameters can be used to define the Space Weather impact on GNSS signals recorded at ground.
Publication: Spogli, L., Piersanti, M., Cesaroni, C., Materassi, M., Cicone, A., Alfonsi, L., … & Ezquer, R. G. (2019). Role of the external drivers in the occurrence of low-latitude ionospheric scintillation revealed by multi-scale analysis. Journal of Space Weather and Space Climate, 9, A35
https://www.swsc-journal.org/articles/swsc/abs/2019/01/swsc180047/swsc180047.html