Home » Solar physics » Magnetic Energy Balance in the Quiet Sun on Supergranular Spatial and Temporal Scales

Magnetic Energy Balance in the Quiet Sun on Supergranular Spatial and Temporal Scales

Papers from SWICo members

F. Giannattasio, G. Consolini, F. Berrilli, and D. Del Moro

Small-scale magnetic fields are ubiquitous in the quiet solar photosphere and may store and transfer huge amounts of energy to the upper atmospheric layers giving rise to a chain of phenomena that are relevant for Space Weather. For this reason, it is fundamental to constrain the energetics of the quiet Sun.

Mean energy variation rate in the Field of View saturated between −1.5 and 1.5 erg/cm−3 s. The superposed green lines are contour plots of the longest magnetic decorrelation times (>120 min).

By taking advantage of a 24 hr long with 90 s cadence magnetogram time series acquired by the Hinode mission without interruption, we computed, for the first time, the average photospheric electric field, the average current density, and starting from these, the rate of change of magnetic energy density on supergranular spatial and temporal scales. The main result is that, on average, the energy provided by photospheric electric and magnetic fields and current density can sustain the magnetic fields in the network.

Publication: F. Giannattasio, G. Consolini, F. Berrilli, and D. Del Moro, Magnetic Energy Balance in the Quiet Sun on Supergranular Spatial and Temporal Scales, The Astrophysical Journal, 904, 1, 2020.
https://doi.org/10.3847/1538-4357/abbb36